Smart Sensor Calibration using Auto-Rotating Perceptrons LatinX in AI Research Workshop - ICML 2020

Daniel Saromo, Leonardo Bravo and Elizabeth Villota

Biomechanics and Applied Robotics Research Laboratory (GIRAB) Pontifical Catholic University of Peru (PUCP)

We used the Auto-Rotating Perceptron (ARP) neural unit to calibrate a wearable sensor.
Our results show that when changing classic perceptrons to ARP, the test loss of the sigmoid networks was reduced by a factor of 15.

Introduction — Motivation

- Sports analysis techniques help athletes to increase their performance and to avoid incorrect practices that could lead to injuries.
- At sports court: Qualitatively evaluation is done by the coach.

Figure 1: Volleyball athlete executing the technical reception gesture.

Introduction — Motivation

- Sports analysis techniques help athletes to increase their performance and to avoid incorrect practices that could lead to injuries.
- At sports court: Qualitatively evaluation is done by the coach.

Figure 1: Volleyball athlete executing the technical reception gesture.

• Main problems: Lack of: objective assessment and wearable sensing.

- Research project:
 - Deals with biomechanical characterization of the service reception in volleyball.
 - A key cuantitative measurement is the Ground Reaction Force (GRF).

- Research project:
 - Deals with biomechanical characterization of the service reception in volleyball.
 - A key cuantitative measurement is the Ground Reaction Force (GRF).
 - Reliable sensors available are expensive, not portable and of limited area (such as the AMTI force plate).

Figure 2: AMTI sensor with its wooden pallet (left) and volleyball athlete executing reception service on the AMTI sensor at the sports court (right).

- Research project:
 - Deals with biomechanical characterization of the service reception in volleyball.
 - A key cuantitative measurement is the Ground Reaction Force (GRF).
 - Reliable sensors available are expensive, not portable and of limited area (such as the AMTI force plate).

Figure 2: AMTI sensor with its wooden pallet (left) and volleyball athlete executing reception service on the AMTI sensor at the sports court (right).

• More information about the project: https://youtu.be/z8aMblOUp_I.

Problem definition — WEVES

• An insole-type WEarable VErtical Sensor system (WEVES) for GRF measurement was developed at GIRAB laboratory, see Figure 3.

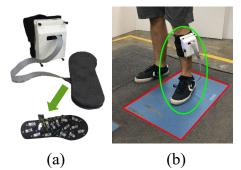


Figure 3: (a) WEVES with insole detail. (b) Stand-up straight position test with AMTI (red) and WEVES (green) sensors.

Problem definition — WEVES

• An insole-type WEarable VErtical Sensor system (WEVES) for GRF measurement was developed at GIRAB laboratory, see Figure 3.

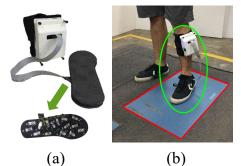


Figure 3: (a) WEVES with insole detail. (b) Stand-up straight position test with AMTI (red) and WEVES (green) sensors.

• WEVES measurement signal **w** must be as close as possible to the AMTI reference signal **p**.

Problem definition — WEVES calibration

• Results from the WEVES output w and the AMTI platform signal p show the same shape with differences in amplitude, for all movements tested.

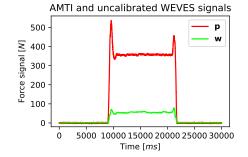


Figure 4: Force measurements (N): AMTI (\mathbf{p} , red) and uncalibrated WEVES (\mathbf{w} , green).

Problem definition — WEVES calibration

• Results from the WEVES output w and the AMTI platform signal p show the same shape with differences in amplitude, for all movements tested.

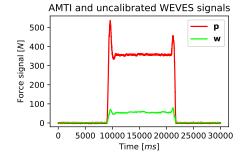


Figure 4: Force measurements (N): AMTI (\mathbf{p} , red) and uncalibrated WEVES (\mathbf{w} , green).

• Same shape

Problem definition — WEVES calibration

• Results from the WEVES output w and the AMTI platform signal p show the same shape with differences in amplitude, for all movements tested.

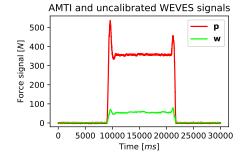


Figure 4: Force measurements (N): AMTI (\mathbf{p} , red) and uncalibrated WEVES (\mathbf{w} , green).

• Same shape \rightarrow What happens if we scale the signal ${f w}$ until we reach ${f p}?$

• What happens if we scale the signal w until we reach p?

• What happens if we scale the signal w until we reach p?

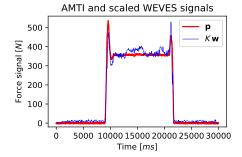


Figure 5: Force measurements (N): AMTI (\mathbf{p} , red) and scaled WEVES ($K\mathbf{w}$, blue).

• What happens if we scale the signal w until we reach p?

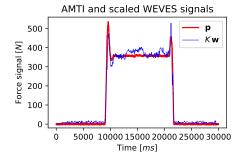


Figure 5: Force measurements (N): AMTI (\mathbf{p} , red) and scaled WEVES ($K\mathbf{w}$, blue).

• We need to find the calibration factor K that makes \mathbf{p} and $K\mathbf{w}$ similar.

• How much do we have to *lift* the WEVES signal in order to reach p?

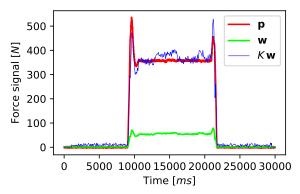


Figure 6: Force measurements (N) overlapped: AMTI (\mathbf{p} , red), uncalibrated WEVES (\mathbf{w} , green), and scaled WEVES ($K\mathbf{w}$, blue).

• How much do we have to *lift* the WEVES signal in order to reach \mathbf{p} ?

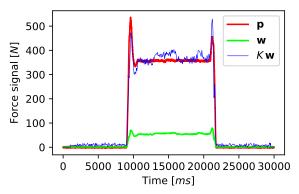


Figure 6: Force measurements (N) overlapped: AMTI (\mathbf{p} , red), uncalibrated WEVES (\mathbf{w} , green), and scaled WEVES ($K\mathbf{w}$, blue).

• In real applications, only the WEVES signal **w** will be available to find the corresponding calibration factor *K*.

Methodology — Calculating the calibration factor K

- WEVES calibration posed as a supervised regression problem.
- Input: w. Output: K.

Methodology — Calculating the calibration factor K

- WEVES calibration posed as a supervised regression problem.
- Input: w. Output: K.
- Dataset generation: We measured the difference between p and scaled w using the Root Mean Square Error (RMSE). Then, finding K is posed as an optimization problem:

0.

Figure 7: Searching the K values that make p and Kw similar.

• Optimizers tested to calculate K: Artificial Bee Colony (ABC) and Particle Swarm Optimization (PSO).

Factor K prediction: We trained four neural regression model types to predict the target K using only w.

 $\blacktriangleright \mathbf{W} \longrightarrow K$

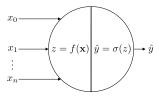
Figure 8: Inferring K from the WEVES signal \mathbf{w} .

Factor K prediction: We trained four neural regression model types to predict the target K using only w.

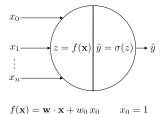
 $\blacktriangleright \mathbf{w} \longrightarrow K$

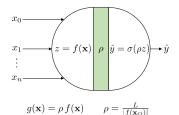
Figure 8: Inferring K from the WEVES signal \mathbf{w} .

• We looked for reducing the loss prediction error of the regression. For this problem, we tested the effect of changing classic perceptrons to Auto-Rotating Perceptrons (ARP), with two activation functions (ReLU and sigmoid).



$$f(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + w_0 \, x_0 \qquad x_0 = 1$$





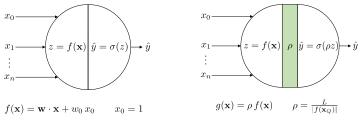


Figure 9: Classic perceptron (left) and ARP (right).

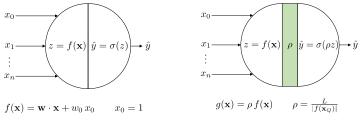


Figure 9: Classic perceptron (left) and ARP (right).

- The ARP, proposed by Saromo et al. [1], is an innovative neural unit that aims to avoid the vanishing gradient problem by making the z inputs of the perceptron activation $\sigma(z)$ near zero with no learning alteration.
- The modification is achieved by multiplying the linear transformation $f(\mathbf{x})$ with an scalar coefficient ρ before the activation function $\sigma(\cdot)$.
- ARP has two hyperparameters: $\mathbf{x}_Q = \langle x_Q, \cdots, x_Q \rangle \in \mathbb{R}^n$ and $L \in \mathbb{R}$.

Methodology — Dynamic region of the neurons

- e.g., $\sigma(z)$: Unipolar sigmoid. If $\sigma'(z) \approx 0 \rightarrow$ Unwanted node saturation.
- Nodes need to be in their dynamic region \mathcal{L} . ARP let us control that.

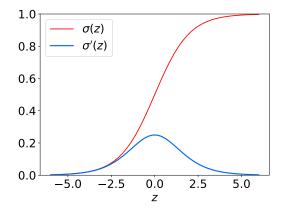


Figure 10: Sigmoid activation function $\sigma(z)$ and its derivative.

Methodology — Dynamic region of the neurons

- e.g., $\sigma(z)$: Unipolar sigmoid. If $\sigma'(z) \approx 0 \rightarrow$ Unwanted node saturation.
- Nodes need to be in their dynamic region \mathcal{L} . ARP let us control that.

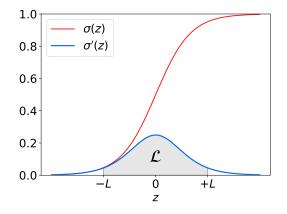


Figure 10: Sigmoid activation function $\sigma(z)$ and its derivative.

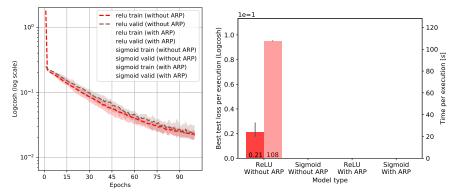


Figure 11: Comparison of the four model types tested. For each model family: 50 executions with 100 epochs per execution.

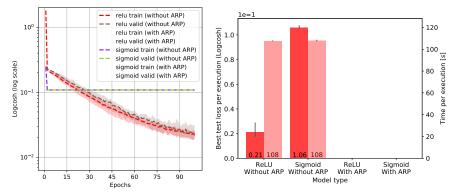


Figure 11: Comparison of the four model types tested. For each model family: 50 executions with 100 epochs per execution.

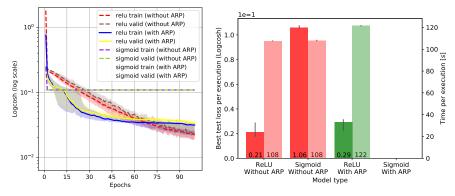


Figure 11: Comparison of the four model types tested. For each model family: 50 executions with 100 epochs per execution.

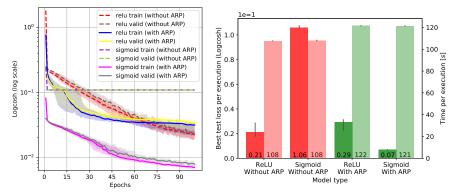


Figure 11: Comparison of the four model types tested. For each model family: 50 executions with 100 epochs per execution.

Experimentation — Calibration results

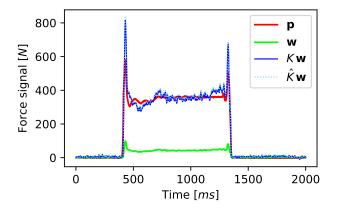


Figure 12: Force measurements (N) overlapped: AMTI (\mathbf{p} , red); uncalibrated WEVES (\mathbf{w} , green); scaled WEVES ($K\mathbf{w}$, blue) with K calculated using \mathbf{p} and \mathbf{w} ; and calibrated WEVES ($\hat{K}\mathbf{w}$, blue) with \hat{K} calculated using only \mathbf{w} .

- We employed the ARP neural unit aiming to calibrate a wearable GRF sensor.
- ARP-sigmoid networks can have a better performance than ReLU networks with classic neurons without altering the inference structure learned by the perceptron.
- Compared with classic perceptrons that use sigmoid, the **test loss** of the sigmoid-ARP networks was **reduced by a factor of 15** at the cost of increasing the execution time by $\sim 12\%$.

 SAROMO, Daniel; VILLOTA, Elizabeth; VILLANUEVA, Edwin. Auto-Rotating Perceptrons.
 LXAI Workshop at NeurIPS. Vancouver, 2019. https://arxiv.org/pdf/1910.02483.pdf

More information about the ARP neural unit available at: https://danielsaromo.xyz/ARP